太空生物学(Astrobiology)顾名思义就是研究生物和外空间物体的相互作用的科学。其中一个重要课题就是地球上的生物能够在太空与外星环境下生存,并进一步改造外星环境使之更适于地球生物。虽然现在我们已经能够在空间站上开展太空环境下的相关研究,但由于技术限制,我们还没办法在外星直接进行这样的研究工作。
中国天宫空间站中的生菜与小麦培养实验(转自中国载人航天官网)
但科学家们还是想尽办法在地球上开展太空生物学研究。他们结合太空观测数据,合理推测外星球的环境条件,通过控制光强、光谱、光周期、大气组成、营养条件等来模拟外星的环境条件来培养地球上的藻类和植物,然后利用叶绿素荧光技术为代表的植物表型分析技术来评估其生长状态,尤其是这些藻类和植物能否稳定地进行光合作用。
叶绿素荧光成像技术广泛应用于藻类、植物生长状态与光合生理评估,左图:基因编辑拟南芥抗病毒检测;中图:利用微藻进行高通量环境毒性生物标记检测;右图:国际空间站使用FluorPen叶绿素荧光仪进行植物生长状态检测
下面我们通过两个微藻相关研究案例来说明相关的太空生物学技术方案:
案例一、蓝藻利用火星风化层来支持火星殖民
葡萄牙阿威罗大学的科学家研究了3种蓝藻(柱孢鱼腥藻Anabaena cylindrica、念珠藻Nostoc muscorum和钝顶节旋藻Arthrospira platensis)和1种绿藻(小球藻Chlorella vulgaris)能否利用火星现有资源生活。他们利用美国月球和小行星表面科学中心提供的火星风化层模拟物(MGS-1)制作成水提物,之后将这几种微藻分别培养在纯水、火星风化层水提物和17%螺旋藻培养基中,定期测量其光密度OD440并使用FluorCam叶绿素荧光成像系统测量其最大光化学效率Fv/Fm。
OD440动态曲线表明微藻生物量的生长变化,而Fv/Fm的高低则直接反映微藻光系统活性以及受损程度。这两项数据结果表明,在火星的营养条件下,念珠藻的生长状况是最好的,而钝顶节旋藻和小球藻则几乎无法生存。因此念珠藻应该成为未来研究的目标,不仅因为它们在氧气生产中的作用,也因为它们可以被用作食物来源。
4种微藻在不同培养基中的OD440动态曲线和Fv/Fm动态曲线
案例二、实验室模拟蓝藻在M矮星的宜居性
近十年的研究发现,40%的M矮星拥有“超级地球”(最小质量在1到30个地球质量之间,轨道周期短于50天,半径介于地球和海王星之间)。但M矮星的光谱特性与太阳有很大的差别,其波长更长,在可见光范围内主要集中在远红光区(FR)。而蓝藻由于可以合成叶绿素d和叶绿素f,因此可以使其光合利用波长延长至750nm。
左图:M矮星示意图;右图:太阳G2与M矮星M7的光谱曲线
由此,意大利国家天文物理研究所、苏黎世联邦理工学院等合作,控制培养光谱、光强、大气组分(CO2浓度)、温度等环境条件,检测Chlorogloeopsis fritschii PCC 6912、Chroococcidiopsis thermalis PCC 7203、Synechococcus PCC 7335、Synechocystis sp. PCC 6803这4种蓝藻在太阳光、M矮星M7光谱、远红光下的生长状况,从而评估这些藻类在M矮星的宜居性。
微藻的生长和光合状况主要使用FluorCam叶绿素荧光成像系统进行检测。叶绿素最小荧光F0(也称原初荧光、本底荧光)在很大程度上与叶绿素浓度和微藻细胞数正相关,因此F0增长率被用来衡量生长量的变化。最大光化学效率Fv/Fm则直接反映其光合效率。结果很令人惊讶,所有微藻在M7光谱条件下的生长状况与在太阳光下类似,而且远好于只在远红光下的生长状况。M7这种奇异光谱的可见光与远红光比例可能是其中的关键因素。
4种蓝藻在太阳光、M7光照、远红光下的Fv/Fm
4种蓝藻在太阳光、M7光照、远红光下的照片和F0增长率
易科泰微藻太空生物学技术方案
参考文献:
北京易科泰生态技术公司提供藻类培养与表型研究全面技术方案: