荧光光纤氧气测量技术具有高精确度、高可靠性、响应时间短、适用于气相和液相等优势,因此随着技术的问世,精确、高通量测量微小生物的呼吸和评估其能量代谢成为可能。高通量呼吸测量系统基于荧光光纤氧气测量技术,能够对果蝇等微小型昆虫、虫卵、蛹、线虫、土壤动物等微小型无脊椎动物进行测量,测定其耗氧量,进而评估其代谢水平。系统在昆虫生理生态学、比较生物学、实验生物学、污染生态学与环境毒理学、环境科学、气候变化研究等领域具有越来越重要的应用价值。
果蝇卵、幼虫、蛹、成虫的耗氧率测定
左图:果蝇卵、幼虫、蛹耗氧率的比较;右图:果蝇成虫耗氧率(麻醉处理VS对照)
系统由内置荧光光纤氧气传感器的微型呼吸室、氧气测量主机及数据采集分析软件组成,可对96个通道的样品进行同步测量。
功能特点
- 氧气测量高精度、高可靠性、低功耗、低交叉敏感性、快速响应时间
- 轻松校准
- 非侵入性和非破坏性测量
- 紧凑设计,适用于温控培养箱和/或摇床
- 气体氧和溶解氧均可测量
技术参数
- 检测技术:光纤氧传感器技术。
- 适用场景:原位检测,可在培养箱里或摇床上使用,便于温度控制。
- 呼吸室:透明聚苯乙烯材质,支持预消毒处理,可重复使用。
- 氧气测量主机:单个重670 g,162 x 102 x 32 mm
- 主机内置温度传感器:0-50°C,分辨率012°C,精度±0.5°C
- 主机内置压强传感器:300-1100mbar,分辨率11mbar,精度±6mbar
- 最大采样频率:单通道激活时可达10-20次每秒
- 氧气测量精度:±0.1% O2@1% O2或±0.05 mg/L@0.44 mg/L
- 氧气测量分辨率:01% O2@1% O2或0.005 mg/L@0.44 mg/L
- 电源:5VDC,USB供电
- 响应时间<30s
- 通道数:96
左图:封闭呼吸室中的苜蓿切叶蜂子脾和蛹;右图:高通量呼吸系统和传统呼吸测量法的结果比较
苜蓿切叶蜂耗氧率(V̇O2)随温度的变化曲线
参考文献
- Clavé, C., Sugio, A., Morlière, S., Pincebourde, S., Simon, J.-C., Foray, V., 2022. Physiological costs of facultative endosymbionts in aphids assessed from energy metabolism. Functional Ecology 36, 2580–2592.
- Earls, K.N., Campbell, J.B., Rinehart, J.P., Greenlee, K.J., 2023. Effects of temperature on metabolic rate during metamorphosis in the alfalfa leafcutting bee. Biology Open 12, bio060213.
- Owen, C.A., Coetzee, J.A., Van Noort, S., Austin, A.D., 2017. Assessing the morphological and physiological adaptations of the parasitoid wasp E chthrodesis lamorali for survival in an intertidal environment. Physiol. Entomol 42, 173–180.
- Uno, H., Stillman, J.H., 2020. Lifetime eurythermy by seasonally matched thermal performance of developmental stages in an annual aquatic insect. Oecologia 192, 647–656.
- Glass, B.H., Jones, K.G., Ye, A.C., Dworetzky, A.G., Barott, K.L., 2023. Acute heat priming promotes short-term climate resilience of early life stages in a model sea anemone. PeerJ 11, e16574.
- Göpel, T., Burggren, W.W., 2024. Temperature and hypoxia trigger developmental phenotypic plasticity of cardiorespiratory physiology and growth in the parthenogenetic marbled crayfish, Procambarus virginalis Lyko, 2017. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 288, 111562.
- Kämmer, N., Reimann, T., Ovcharova, V., Braunbeck, T., 2023. A novel automated method for the simultaneous detection of breathing frequency and amplitude in zebrafish (Danio rerio) embryos and larvae. Aquatic Toxicology 258, 106493.
- Karlsson, K., Søreide, J.E., 2023. Linking the metabolic rate of individuals to species ecology and life history in key Arctic copepods. Mar Biol 170, 156.
- Mathiron, A.G.E., Gallego, G., Silvestre, F., 2023. Early-life exposure to permethrin affects phenotypic traits in both larval and adult mangrove rivulus Kryptolebias marmoratus. Aquatic Toxicology 259, 106543.
- Pettersen, A.K., Metcalfe, N.B., Seebacher, F., 2024. Intergenerational plasticity aligns with temperature-dependent selection on offspring metabolic rates. Philosophical Transactions of the Royal Society B: Biological Sciences 379, 20220496.